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ABSTRACT

Context. Rotation is thought to influence the size of convective eddies and the efficiency of convective energy transport in the
deep convection zones of stars. Rotationally constrained convection has been invoked to explain the lack of large-scale power in
observations of solar flows.
Aims. The main aims are to quantify the effects of rotation on the scale of convective eddies and velocity, the depths of convective
overshoot, and the subadiabatic Deardorff layers.
Methods. Moderately turbulent three-dimensional hydrodynamic simulations of rotating convection in local Cartesian domains were
run. The rotation rate and luminosity of the simulations are varied to probe the dependency of the results on Coriolis, Mach, and
Richardsson numbers measuring the incluences of rotation, compressibility, and stiffness of the radiative layer. The results were
compared with theoretical scaling results that assume a balance between Coriolis, inertial, and buoyancy (Archemedean) forces,
which is also referred to as the CIA balance.
Results. The horizontal scale of convective eddies decreases as rotation increases, and ultimately reaches a rotationally constrained
regime consistent with the CIA balance. Using a new measure of the rotational influence on the system, it is shown that even the
deep parts of the solar convection zone are not in the rotationally constrained regime. The simulations capture the slowly and rapidly
rotating scaling laws predicted by theory, and the Sun appears to be in between these two regimes. Both, the overshooting depth and
the extent of the Deardorff layer, decrease as rotation becomes more rapid. For sufficiently rapid rotation the Deardorff layer is absent
due to the symmetrization of up- and downflows. However, for the most rapidly rotating cases the overshooting increases again due
to unrealistically large Richardsson numbers that allow convective columns penetrate deep into the radiative layer.
Conclusions. Relating the simulations with the Sun suggests that the convective scale even in the deep parts of the Sun is only mildly
affected by rotation and that some other mechanism is needed to explain the lack of strong large-scale flows in the Sun. Taking the
current results at face value, the overshoot and Deardorff layers are estimated to span roughly five per cent of the pressure scale height
at the base of the convection zone in the Sun.
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1. Introduction

The theoretical understanding of solar and stellar convection was
shaken roughly a decade ago when helioseismic analysis sug-
gested that the velocity amplitudes in the deep solar convection
zone are orders of magnitude smaller than anticipated from theo-
retical and numerical models (Hanasoge et al. 2012). Significant
effort has been put in refining these estimates but a gaping dis-
crepancy between numerical models and helioseismology re-
mains (e.g. Hanasoge et al. 2016; Proxauf 2021); see, however
Greer et al. (2015). This issue is now refererred to as the convec-
tive conundrum (O’Mara et al. 2016).

Several solutions to this conundrum have been proposed, in-
cluding high effective Prandtl number (e.g. Karak et al. 2018),
rotationally constrained convection (Featherstone & Hindman
2016), and that the superadiabatic layer in the Sun is much thin-
ner than thus far thought (Brandenburg 2016); see also Käpylä
et al. (2023) and references therein. The two latter ideas are ex-
plored further in the current study. The idea that convection is
rotationally constrained in the deep convection zone (CZ) is al-
ready borne out of mixing length models of solar convection
that imply velocity amplitudes uconv of about 10 m s−1 for the

deep convection zone, while the convective length scale ℓconv,
which is the mixing length, is of the order of 100 Mm, yielding a
Coriolis number Co⊙ = 2Ω⊙ℓconv/uconv of the order of 10 (e.g.
Ossendrijver 2003; Schumacher & Sreenivasan 2020). However,
this estimate does not take into account the decreasing length
scale due to the rotational influence on convection. Assuming
that the Coriolis, inertial, and buoyancy (Archimedean) forces
balance, also known as the CIA balance (e.g. Stevenson 1979;
Ingersoll & Pollard 1982; King & Buffett 2013; Barker et al.
2014; Aurnou et al. 2020; Vasil et al. 2021), implies that the
convective scale is given by ℓconv ∝ Co−1/2, where Co =
2ΩH/uconv is a global Coriolis number, where Ω is the rotation
rate and where H is a length scale corresponding to the system
size (e.g. Aurnou et al. 2020). This idea has been explored re-
cently by Featherstone & Hindman (2016) and Vasil et al. (2021)
who suggested that the largest convectively driven scale in the
Sun coincides with that of supergranulation due to rotationally
constrained convection in the deep CZ. These studies assumed
from the outset that convection is strongly rotationally affected.
Here a somewhat different perspective is taken in that an attempt
is made to assess whether this assumption holds for the deep so-
lar CZ. Furthermore, in addition to ℓconv, the scalings of various
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quantities based on predictions from the CIA balance are studied
over a wide range of rotation rates.

Simulations of stratified overshooting convection have re-
vealed that deep parts of CZs are often weakly stably stratified
(e.g. Roxburgh & Simmons 1993; Tremblay et al. 2015; Hotta
2017; Bekki et al. 2017; Käpylä et al. 2017; Käpylä 2019). This
is interpreted such that convection is driven by the cooling at the
surface that induces cool downflow plumes which pierce through
the entire convection zone and penetrate deep into the stable
layers below. This process has been named entropy rain (e.g.
Brandenburg 2016) and goes back to ideas presented by Spruit
(1997) and the simulations of Stein and Nordlund (e.g. Stein
& Nordlund 1989, 1998). This picture of convection is a clean
break from the canonical view in which convection is driven
throughout the convection zone by a superadiabatic temperature
gradient, an idea which is also encoded into the mixing length
concept (e.g. Vitense 1953; Böhm-Vitense 1958). Theoretically
this can be understood such that the convective energy flux that
is traditionally proportional to the entropy gradient is supple-
mented by a non-gradient term proportional to the variance of
entropy fluctuations (Deardorff 1961, 1966).

Analysis of the force balance of up- and downflows in non-
rotating hydrodynamic simulations supports the idea of surface-
driven non-local convection (e.g. Käpylä et al. 2017; Käpylä
2019, 2021). Thus far these studies have mostly concentrated
on non-rotating convection (see, however Käpylä et al. 2019;
Viviani & Käpylä 2021). Here rotation is included to study its
impact on the formation and extent of stably stratified Deardorff
layers where the convective flux runs counter to the entropy
gradient. Another aspect of interest in astrophysics is convec-
tive overshooting (see, e.g. Anders & Pedersen 2023, for a re-
cent review). Numerical studies targeting specifically overshoot-
ing have largely concentrated on non-rotating cases (e.g. Singh
et al. 1995, 1998; Saikia et al. 2000; Brummell et al. 2002;
Hotta 2017; Käpylä 2019; Anders et al. 2022), and the effects
of rotation have received much less attention (e.g. Ziegler &
Rüdiger 2003; Käpylä et al. 2004; Brun et al. 2017). It is gen-
erally thought that rotation leads to reduction of overshooting
depth (e.g. Ziegler & Rüdiger 2003) but a comprehensive study
of this is still lacking.

The remainder of the paper is organized as follows: the
model is described in Section 2, whereas the results and con-
clusions of the study are presented in Sections 3 and 4, respec-
tively. The derivations related to the CIA balance are presented
in Appendix A.

2. The model

The model is the same as that used in Käpylä (2019, 2021).
The PENCIL CODE (Pencil Code Collaboration et al. 2021)1

was used to produce the simulations. Convection is modeled in
a Cartesian box with dimensions (Lx, Ly, Lz) = (4, 4, 1.5)d,
where d is the depth of the initially convectively unstable layer.
The equations for compressible hydrodynamics are solved:

D ln ρ

Dt
= −∇ · u, (1)

Du

Dt
= g − 1

ρ
(∇p−∇ · 2νρS)− 2Ω× u, (2)

T
Ds

Dt
= −1

ρ
[∇ · (Frad + FSGS)− C] + 2νS2, (3)

1 https://github.com/pencil-code/

where D/Dt = ∂/∂t + u · ∇ is the advective derivative, ρ is
the density, u is the velocity, g = −gêz is the acceleration due
to gravity with g > 0, p is the pressure, T is the temperature,
s is the specific entropy, ν is the constant kinematic viscosity,
and Ω = Ω0(− sin θ, 0, cos θ)T is the rotation vector, where θ
is the colatitude. Frad and FSGS are the radiative and turbulent
subgrid scale (SGS) fluxes, respectively, and C describes cooling
near the surface. S is the traceless rate-of-strain tensor with

Sij =
1
2 (ui,j + uj,i)− 1

3δij∇ · u. (4)

The gas is assumed to be optically thick and fully ionized, where
radiation is modeled via the diffusion approximation. The ideal
gas equation of state p = (cP − cV)ρT = RρT applies, where
R is the gas constant, and cP and cV are the specific heats at
constant pressure and volume, respectively. The radiative flux is
given by

Frad = −K∇T, (5)

where K is the radiative heat conductivity

K =
16σSBT

3

3κρ
, (6)

where σSB is the Stefan-Boltzmann constant and κ is the opac-
ity. Assuming that the opacity is a power law of the form
κ = κ0(ρ/ρ0)

a(T/T0)
b, where ρ0 and T0 are reference values

of density and temperature, the heat conductivity is

K(ρ, T ) = K0(ρ/ρ0)
−(a+1)(T/T0)

3−b. (7)

The choice a = 1 and b = −7/2 corresponds to the Kramers
opacity law (Weiss et al. 2004), which was used in convection
simulations by Edwards (1990) and Brandenburg et al. (2000).

Additional turbulent SGS diffusivity is applied for the en-
tropy fluctuations with

FSGS = −ρTχSGS∇s′, (8)

where s′(x) = s(x) − s with the overbar indicating horizontal
averaging. The coefficient χSGS is constant in the whole domain
and FSGS has a negligible contribution to the net energy flux
such that F SGS ≈ 0.

The cooling at the surface is described by

C = ρcP
Tcool − T

τcool
fcool(z), (9)

where τcool is a cooling time, T = e/cV is the temperature
where e is the internal energy, and where Tcool = Ttop is a ref-
erence temperature corresponding to the fixed value at the top
boundary.

The advective terms in Equations (1) to (3) are written in
terms of a fifth-order upwinding derivative with a hyperdiffusive
sixth-order correction with a local flow-dependent diffusion co-
efficient; see Appendix B of Dobler et al. (2006).

2.1. Geometry, initial and boundary conditions

The computational domain is a rectangular box where the ver-
tical coordinate is zbot ≤ z ≤ ztop with zbot/d = −0.45,
ztop/d = 1.05. The horizontal coordinates x and y run from
−2d to 2d. The initial stratification consists of three layers. The
two lower layers are polytropic with polytropic indices n1 =
3.25 (zbot/d ≤ z/d ≤ 0) and n2 = 1.5 (0 ≤ z/d ≤ 1). The
former follows from a radiative solution that is a polytrope with
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index n = (3− b)/(1 + a); see Barekat & Brandenburg (2014),
Appendix A of Brandenburg (2016), and Figure 1. The latter cor-
responds to a marginally stable isentropic stratification. Initially
the uppermost layer above z/d = 1 is isothermal, mimicking
a photosphere where radiative cooling is efficient. Convection
ensues because the system is not in thermal equilibrium due
to the cooling near the surface and due to the inefficient radia-
tive diffusion in the layers above z/d = 0. The velocity field is
initially seeded with small-scale Gaussian noise with amplitude
10−5

√
dg.

The horizontal boundaries are periodic and the vertical
boundaries are impenetrable and stress free according to

∂ux

∂z
=

∂uy

∂z
= uz = 0. (10)

A constant energy flux is imposed at the lower boundary by set-
ting

∂T

∂z
= − Fbot

Kbot
, (11)

where Fbot is the fixed input flux and Kbot = K(x, y, zbot).
Constant temperature T = Ttop is imposed on the upper vertical
boundary.

2.2. Units and control parameters

The units of length, time, density, and entropy are given by

[x] = d, [t] =
√

d/g, [ρ] = ρ0, [s] = cP, (12)

where ρ0 is the initial value of density at z = ztop. The models
are fully defined by choosing the values of ν, Ω0, θ g, a, b, K0,
ρ0, T0, τcool, and the SGS Prandtl number

PrSGS =
ν

χSGS
, (13)

along with the cooling profile fcool(z). The values of K0, ρ0, T0

are subsumed into another constant K̃0 = K0ρ
a+1
0 T b−3

0 which
is fixed by assuming the radiative flux at zbot to equal Fbot at
t = 0. The cooling profile fcool(z) = 1 above z/d = 1 and
fcool(z) = 0 below z/d = 1, connecting smoothly across the
interface over a width of 0.025d. The quantity ξ0 = Htop

p /d =
RTtop/gd sets the initial pressure scale height at the surface and
determining the initial density stratification. All of the current
simulations have ξ0 = 0.054.

Prandtl number based on the radiative heat conductivity is

Pr(x) =
ν

χ(x)
, (14)

where χ(x) = K(x)/cPρ(x), quantifies the relative importance
of viscous to temperature diffusion. Unlike many other simu-
lations, Pr is not an input parameter because of the non-linear
dependence of the radiative diffusivity on the ambient thermo-
dynamics. The dimensionless normalized flux is given by

Fn =
Fbot

ρ(zbot)c3s (zbot)
, (15)

where ρ(zbot) and cs(zbot) are the density and the sound speed,
respectively, at z = zbot at t = 0. At the base of the solar CZ
Fn ≈ 4 · 10−11 (e.g. Brandenburg et al. 2005), whereas in the
current fully compressible simulations several orders of magni-
tude larger values are used.

The effect of rotation is quantified by the Taylor number

Ta =
4Ω2

0d
4

ν2
, (16)

which is related to the Ekman number via Ek = Ta−1/2.
The Rayleigh number based on the energy flux is given by

RaF =
gd4Fbot

cPρTνχ2
. (17)

This can be used to construct a flux-based diffusion-free mod-
ified Rayleigh number (e.g. Christensen 2002; Christensen &
Aubert 2006)

Ra⋆F =
RaF

Pr2Ta3/2
, (18)

In the current set-up Ra⋆F is given by

Ra⋆F =
gFbot

8cPρTΩ3
0d

2
. (19)

A reference depth needs to be chosen because Ra⋆F = Ra⋆F(z).
Furthermore, H ≡ cPT/g is a length scale related to the pres-
sure scale height. The choice d = H = Hp, where Hp ≡
−(∂ ln p/∂z)−1 is the pressure scale height at the base of the
convection zone, leads to

Ra⋆F =
Fbot

8ρΩ3H3
p

. (20)

2.3. Diagnostics quantities

The global Reynolds and SGS Péclet numbers describe the
strength of advection versus viscosity and SGS diffusion

Re =
urms

νk1
, PeSGS =

urms

χSGSk1
, (21)

where urms is the volume averaged rms-velocity, and where
k1 = 2π/d is an estimate of the largest eddies in the system.
The Reynolds and Péclet number based on the actual convective
length scale ℓ are given by

Reℓ =
urmsℓ

ν
, Peℓ =

urmsℓ

χSGS
. (22)

Here ℓ = k−1
mean is chosen, where kmean = kmean(z) is the mean

wavenumber (e.g. Christensen & Aubert 2006; Schrinner et al.
2012), and which is computed from

kmean(z) =

∫
kE(k, z)dk∫
E(k, z)dk

, (23)

where E(k, z) is the power spectrum of the velocity field with
u2(z) =

∫
E(k, z)dk.

In general the total thermal diffusivity is given by

χeff(x) = χSGS + χ(x). (24)

However, in all of the current simulations χ ≪ χSGS in the CZ
such that the Prandtl and Péclet numbers based on χeff differ
very little from PrSGS and PeSGS. The Rayleigh number is de-
fined as

Ra =
gd4

νχ

(
− 1

cP

ds

dz

)
hs

, (25)

3
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which varies as a function of height and is quoted near the
surface at z/d = 0.85. The Rayleigh number in the hydro-
static, non-convecting, state is measured from a one-dimensional
model that is run to thermal equilibrium, and where the con-
vectively unstable layer is confined to the near-surface layers
(Brandenburg 2016); see also Figure 1. In the hydrostatic case
χ = χ(z) and χSGS, which affects only the fluctuations, plays
no role. The turbulent Rayleigh number is quoted from the sta-
tistically stationary state using the horizontally averaged mean
state,

Rat =
gd4

νχeff

(
− 1

cP

ds

dz

)∣∣∣∣
z/d=0.85

, (26)

where the overbar denotes temporal and horizontal averaging.
Rotational influence on the flow is measured by several ver-

sions of the Coriolis number. First, the global Coriolis number is
defined as

Co =
2Ω0

urmsk1
, (27)

where k1 = 2π/d is the wavenumber corresponding to the sys-
tem scale. This definition neglects the changing length scale as
a function of rotation and overestimates the rotational influence
when rotation is rapid and the convective scale is smaller. A def-
inition that takes the changing length scale into account is given
by the vorticity-based Coriolis number

Coω =
2Ω0

ωrms
, (28)

where ωrms is the volume-averaged rms-value of the vorticity
ω = ∇ × u. Another definition of the Coriolis number taking
into account the changing integral length scale is given by

Coℓ =
2Ω0ℓ

urms
, (29)

where ℓ = (kmean)
−1 where the overbar denotes averaging over

time and CZ. This is a commonly used choice in simulations
of convection in spherical shells (Schrinner et al. 2012; Gastine
et al. 2014); see also Aurnou et al. (2020) who considered con-
vection in the limits of slow rotation and rapid rotation.

Let us further define a flux Coriolis number CoF2 as

CoF ≡ 2Ω0Hp

uflux
= 2Ω0Hp

(
ρ⋆
Fbot

)1/3

, (30)

where uflux is a reference velocity obtained from

Ftot = ρ⋆u
3
⋆, (31)

where ρ⋆ is a reference density, taken here at the bottom of the
CZ. uflux does not, and does not need to, correspond to any ac-
tual velocity and it rather represents the available energy flux.
Therefore CoF does not depend on any dynamical flow speed or
length scale which are set by complicated interactions of con-
vection, rotation, magnetism, and other relevant physics. On the
other hand, CoF depends only on quantities that can either be
measured (Ftot, Ω0) or deduced from stellar structure models
with relatively little ambiguity (Hp, ρ⋆). The significance of CoF
is seen when rearranging Eq. (20) to yield

(2Ω0Hp)
3 ρ

Fbot
= (Ra⋆F)

−1. (32)

2 The same quantity was referred to as stellar Coriolis number in
Käpylä (2023).

Identifying the lhs with Co3F, Eq. (30), gives

CoF = (Ra⋆F)
−1/3. (33)

An often used phrase in the context of convection simulations
targeting the Sun is that while all the other system parameters
are beyond the reach of current simulations, the rotational influ-
ence on the flow can be reproduced (e.g. Käpylä et al. 2023).
Equation (33) gives this a more precise meaning in that the solar
value of Ra⋆F needs to be matched by any simulation claiming to
model the Sun.

The net vertical energy flux consists of contributions due
to radiative diffusion, enthalpy, kinetic energy flux, and viscous
fluxes as well as the surface cooling:

F rad = −K
dT

dz
, (34)

F enth = cP(ρuz)′T ′, (35)

F kin = 1
2ρu

2u′
z, (36)

F visc = −2νρuiSiz (37)

F cool = −
∫ ztop

zbot

Cdz. (38)

Here the primes denote fluctuations and overbars horizontal av-
erages. The total convected flux (Cattaneo et al. 1991) is the sum
of the enthalpy and kinetic energy fluxes:

F conv = F enth + F kin, (39)

which corresponds to the convective flux in, for example, mixing
length models of convection.

Another useful diagnostic is buoyancy or Brunt-Väisälä fre-
quency, which is given by

N2 =
g

cP

ds

dz
, (40)

and describes the stability of an atmosphere with respect to
buoyancy fluctuations if N2 > 0. Finally, the Richardson num-
ber related to rotation in the stably stratified layers is defined as

RiΩ =
N2

Ω2
0

. (41)

Averages denoted by overbars are typically taken over the hori-
zontal directions and time, unless specifically stated otherwise.

3. Results

Three sets of simulations with varying Fn and approximately
the same values of CoF are presented. These will be referred to
as Sets A, B, and C. The non-rotating runs in these sets corre-
spond respectively to Runs K3, K4, and K5 in Käpylä (2019) in
terms of Fn, although lower values of ν and χSGS were used
in the runs of the present study. Note that when Fn is varied
between the sets of simulations, the rotation rate Ω0, and the dif-
fusivities ν and χSGS are varied at the same time proportional
to F

1/3
n (see, e.g. Käpylä et al. 2020, and Appendix A for more

details). Furthermore, the cooling time τcool is varied propor-
tional to Fn. The current simulations have modest Reynolds
and Péclet numbers in comparison to astrophysically relevant
parameter regimes (e.g. Ossendrijver 2003; Kupka & Muthsam
2017; Käpylä et al. 2023); see Table 1. Earlier studies from non-
rotating convection suggest that results obtained at such mod-
estly turbulent regimes remain robust also at the highest res-
olutions affordable (Käpylä 2021). This is due to the fact that
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Table 1. Summary of the runs.

Run RaF[10
13] Ra⋆F Ta Fn[10

−6] Co Coω Coℓ CoF Re Rat[10
6] RiRZ

Ω grid
A0 0.5 − 0 4.6 0.00 0.00 0.00 0.00 38.7 4.1 − 2883

A1 0.5 2.5 · 102 1.0 · 104 4.6 0.07 0.02 0.08 0.28 38.9 4.3 1.4 · 104 2883

A2 0.5 31 4.0 · 104 4.6 0.13 0.03 0.16 0.55 39.6 4.3 3.3 · 103 2883

A3 0.5 3.9 1.6 · 105 4.6 0.26 0.06 0.31 1.04 39.4 4.6 8.0 · 102 2883

A4 0.5 0.25 1.0 · 106 4.6 0.63 0.15 0.71 2.38 40.0 5.1 1.2 · 102 2883

A5 0.5 0.11 1.7 · 106 4.6 0.82 0.19 0.87 3.04 40.0 5.5 7.1 · 101 2883

A6 0.5 3.1 · 10−2 4.0 · 106 4.6 1.27 0.29 1.26 4.56 39.8 6.1 30 2883

A7 0.6 3.9 · 10−3 1.6 · 107 4.6 2.62 0.57 2.17 9.17 38.7 7.5 7.5 2883

A8 0.6 2.5 · 10−4 1.0 · 108 4.6 7.21 1.38 3.88 25.1 35.1 10.9 1.2 2883

A9 0.7 3.0 · 10−5 4.0 · 108 4.6 16.5 2.67 6.31 52.9 30.7 16.0 0.32 2883

B0 1.9 − 0 1.8 0.00 0.00 0.00 0.00 38.3 4.4 − 2883

B1 1.9 2.5 · 102 1.0 · 104 1.8 0.07 0.02 0.08 0.27 38.5 4.4 2.5 · 104 2883

B2 1.9 32 4.0 · 104 1.8 0.13 0.03 0.17 0.54 38.9 4.5 6.2 · 103 2883

B3 1.8 4.0 1.6 · 105 1.8 0.26 0.06 0.32 1.03 39.0 4.8 1.5 · 103 2883

B4 1.8 0.26 1.0 · 106 1.8 0.65 0.15 0.70 2.34 39.3 5.3 2.2 · 102 2883

B5 1.8 9.3 · 10−2 2.0 · 106 1.8 0.90 0.20 0.97 3.21 39.4 5.7 1.1 · 102 2883

B6 1.8 3.2 · 10−2 4.0 · 106 1.8 1.30 0.29 1.27 4.49 39.1 6.3 55 2883

B7 1.9 4.0 · 10−3 1.6 · 107 1.8 2.69 0.56 2.09 8.98 37.7 7.8 14 2883

B8 2.0 2.6 · 10−4 1.0 · 108 1.8 7.32 1.36 3.90 24.4 34.6 11.4 2.3 2883

B9 2.2 3.1 · 10−5 4.0 · 108 1.8 16.6 2.67 6.32 51.4 30.5 16.2 0.58 2883

C0 5.0 − 0 0.9 0.00 0.00 0.00 0.00 38.1 4.7 − 2883

C1 5.0 2.6 · 102 1.0 · 104 0.9 0.07 0.01 0.08 0.27 38.2 4.8 4.0 · 104 2883

C2 4.9 32 4.0 · 104 0.9 0.13 0.03 0.16 0.53 38.4 4.9 9.8 · 103 2883

C3 4.8 4.0 1.6 · 105 0.9 0.26 0.06 0.31 1.01 38.7 5.0 2.3 · 103 2883

C4 4.7 0.26 1.0 · 106 0.9 0.65 0.14 0.73 2.31 39.2 5.5 3.5 · 102 2883

C5 4.7 1.2 · 10−1 1.7 · 106 0.9 0.84 0.19 0.91 2.96 39.1 5.7 2.1 · 102 2883

C6 4.7 3.2 · 10−2 4.0 · 106 0.9 1.31 0.28 1.27 4.47 38.7 6.3 87 2883

C7 4.8 4.1 · 10−3 1.6 · 107 0.9 2.71 0.55 2.14 8.93 37.3 8.1 22 2883

C8 5.0 2.6 · 10−4 1.0 · 108 0.9 7.43 1.35 4.03 23.8 34.1 11.6 3.5 2883

C9 5.3 3.2 · 10−5 4.0 · 108 0.9 16.8 2.65 6.44 50.5 30.1 16.7 0.91 2883

A1m 1.1 2.5 · 102 4.0 · 104 4.6 0.06 0.01 0.07 0.29 83.2 20.6 1.4 · 104 5763

A3m 1.0 3.9 6.4 · 105 4.6 0.24 0.04 0.27 1.05 84.3 21.1 8.0 · 102 5763

A5m 1.1 0.12 6.8 · 106 4.6 0.79 0.14 0.78 3.00 83.3 23.1 71 5763

A6m 1.1 3.2 · 10−2 1.6 · 107 4.6 1.21 0.21 1.08 4.53 83.5 24.8 30 5763

A7m 1.1 4.0 · 10−3 6.4 · 107 4.6 2.50 0.40 1.88 9.06 81.1 31.6 7.5 5763

A8m 1.2 2.5 · 10−4 4.0 · 108 4.6 6.83 0.99 3.51 24.8 74.2 45.4 1.2 5763

A9m 1.3 3.1 · 10−5 1.6 · 109 4.6 15.5 1.96 5.59 53.6 65.6 59.5 0.31 5763

A5h 2.1 0.11 2.7 · 107 4.6 0.76 0.10 0.68 3.00 174 91.4 71 11523

A9h 2.5 3.0 · 10−5 6.4 · 109 4.6 14.2 1.43 8.36 54.5 143 245 0.31 11523

Notes. Summary of the runs. PrSGS = 1 in all runs such that PeSGS = Re. Runs with rotation were made with θ = 0, corresponding to the north
pole of the star. τcool = 2.5(Fn/F

A
n )

√
d/g, where FA

n = 4.6 · 10−6 is the normalized flux in the runs in Set A.

the main energy transport mechanism (convection) and the main
driver of convection (surface cooling) are not directly coupled
to the diffusivities. However, the current cases with rotation are
more complicated because the supercriticality of convection de-
creases with increasing rotation rate (e.g. Chandrasekhar 1961;
Roberts 1968). The effects of decreasing supercriticality are not
studied systematically here, but subsets of the runs in Set A were
repeated with higher resolutions (5763 and 11523) and corre-
spondingly higher RaF, Re, and Pe; see Sets Am and Ah in
Table 1.

3.1. Hydrostatic solution

Earlier studies have shown that a purely radiative hydrostatic
solution with the Kramers opacity law is a polytrope with in-

dex nrad = 3.25 (Barekat & Brandenburg 2014; Brandenburg
2016). Such a solution arises in the case where K = const. and
∇zT = const. To see if this configuration is recovered with the
current set-up, Equations (1) to (3) were solved numerically in
a one-dimensional z-dependent model with otherwise the same
parameters as in the 3D simulations corresponding to the runs
in Set A. The resulting temperature profile is shown in Fig. 1(a)
along with a corresponding horizontally averaged profile from
convecting Runs A0, A6, and A9. The stratification is consis-
tent with a polytrope corresponding to nrad up to a height of
roughly z/d = 0.75. Near the nominal surface of the convec-
tion zone, z/d = 1, the temperature gradient steepens sharply
because the cooling term relaxes the temperature toward a con-
stant (z-independent) value near the surface. Therefore, neither
K nor ∇zT are constants in this transition region between the
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Fig. 1. (a) Temperature as a function of height from a 1D hydro-
static model (black solid line) as well as convective runs Run A0
(red dashed), A6 (blue dashed), and A9 (orange dashed). The
black (red) dotted line shows a polytropic gradient correspond-
ing to index nrad = 3.25 (nad = 1.5) for reference. (b) Absolute
value of the superadiabatic temperature gradient ∆∇ from the
same runs as indicated by the legend. Red (blue) indicates con-
vectively unstable (stable) stratification. The dotted vertical lines
at z = 0 and z/d = 1 denote the base and top of the initially
isentropic layer.

radiative and the cooling layers. In the initial state the stratifica-
tion is isothermal above z/d = 1, but because the cooling pro-
file fcool has a finite width, cooling also occurs below z/d = 1
and the isothermal layer is wider in the final thermally saturated
state. This also depends on the value of τcool. In the convective
runs the stratification is nearly polytropic with index nrad near
the base of the radiative layer and nearly isentropic with nad in
the bulk of the convection zone.

The superadiabatic temperature gradient is defined as

∆∇ ≡ ∇−∇ad = −Hp

cP

ds

dz
, (42)

where ∇ = d lnT/d ln p is the logarithmic temperature gradi-
ent and ∇ad = 1− 1/γ is the corresponding adiabatic gradient.
Comparison of the hydrostatic profile and the non-rotating con-
vective model A0 shows that the convectively unstable layer in
the former is much thinner than in the latter. This is a direct con-
sequence of the strong temperature and density dependence of
the Kramers opacity law. A similar conclusion applies also to the
Sun, where the hypothetical non-convecting hydrostatic equilib-
rium solution has a very thin superadiabatic layer (Brandenburg
2016). The steepness of the temperature gradient near the sur-
face is characterized by the maximum value of (∆∇)hyd, which

is 23.4. By comparison, in the convective Run A0 ∆∇ = 0.12.
The Rayleigh number – measured at z/d = 0.85 – in the hy-
drostatic case is Ra = 5.4 · 107, which is about an order of
magnitude greater than Rat in Run A0.

3.2. Qualitative flow characteristic as a function of rotation

Figure 2 shows representative flow fields from runs with slow,
intermediate, and rapid rotation, corresponding to Coriolis num-
bers 0.13, 1.3, and 16.5, respectively. The effects of rotation are
hardly discernible in the slowly rotating case A2 with Co =
0.13. In the run with intermediate rotation, Run A6 with Co =
1.3, the convection cells are somewhat smaller than in the slowly
rotating case and more vortical structures are visible near the sur-
face. For the most rapidly rotating case, Run A9 with Co = 16.5,
the size of the convection cells is drastically reduced in compar-
ison to the other two runs and clear alignment of the convection
cells with the rotation vector is seen.

3.3. Convective scale as function of rotation

Power spectra E(k) of the velocity fields for the runs in Set A
are shown in Fig. 3 from depths near the surface, at the mid-
dle and near the base of the CZ. As was already evident from
visual inspection of the flow fields, the dominant scale of the
flow decreases as the rotation rate increases. Quantitatively, the
wavenumber kmax, where E(k) has its maximum, increases
roughly in proportion to Co1/2. The mean wavenumber kmean,
computed from Eq. (23), shows the same scaling for Co ≳ 2.
This is explained by the broader distribution of power at dif-
ferent wavenumbers at slow rotation in comparison to the rapid
rotation cases where fewer – or just a single – convective modes
are dominant; see Figure 3.

A decreasing length scale of the onset of linear instability
under the influence of rotation was derived in (Chandrasekhar
1961) with konset ∝ Ta2/3. With Ta ∝ Co2Re2, and with Re
being approximately constant, konset ∝ Co1/3 is obtained. On
the other hand, considering the CI part of the CIA balance in
the Navier–Stokes equation gives (e.g. Aurnou et al. 2020, see
Eq. (A.10) in Appendix A) gives(
kmax

k1

)2

∝ 2Ω

k1u
= Co, (43)

or kmax ∝ Co1/2. This is consistent with the current simula-
tions; see the inset in the left panel of Fig. 3. The same result
was obtained in Featherstone & Hindman (2016). Some non-
linear convection simulations show scalings that are similar but
somewhat shallower than that obtained from the CIA balance;
see, e.g., Viviani et al. (2018) and Currie et al. (2020).

To estimate the convective length scale in the Sun based on
the current results requires that the value of CoF matches that
of the deep solar CZ. The quantities on the rhs of Eq. (30) at
the base of the solar convection zone are Hp ≈ 5 · 107 m,
ρ⋆ ≈ 200 kg m−3, Fbot = L⊙/(4πr

2
CZ) ≈ 1.27 · 108 kg s−3,

with rCZ = 0.7R⊙ ≈ 4.9 · 108 m and L⊙ = 3.83 · 1026 W,
and Ω⊙ = 2.7 · 10−6 s−1. Inserting this data into Eq. (30)
yields Co⊙F ≈ 3.1. The values of CoF are listed for all runs
in the eight column of Table 1. The moderately rotating runs
[A,B,C]5 correspond to the rotational constraint at the base of
the solar CZ with CoF = 3.0 . . . 3.2. The mean wavenumber
kmean/k1 ≈ 7 in these simulations corresponds to a horizon-
tal scale of ℓconv = Lx(k1/kmean) ≈ 0.57d. The pressure
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Fig. 2. Flow fields from Runs A2 with Co = 0.13 (left), A6 with Co = 1.3 (middle), and A9 Co = 16.5 (right) at the north pole
(θ = 0◦). The colours indicate vertical velocity and the contours indicate streamlines.

Fig. 3. Normalized velocity power spectra near the surface (left panel), middle (middle), and base (right) of the CZ from runs in Set
A with Co varying between 0 and 16.5. The inset in the left panel shows the mean scale kmean and wavenumber of the where E(k)
has its maximum (kmax) as functions of Co for z/d = 0.85. The error bars indicate the standard deviation. The gray dashed line
shows a power law proportional to Co1/2.

scale height at zDZ is about 0.49d such that ℓconv ≈ 1.16Hp.
Converting this to physical units using H⊙

p ≈ 5 · 106 m yields
ℓconv ≈ 58 Mm. Following the procedure of Featherstone &
Hindman (2016) and using kmax instead of kmean, kmax/k1 = 3
and ℓconv ≈ 130 Mm. Both of these estimates are significantly
larger that the supergranular scale of 20 . . . 30 Mm which was
suggested to be the largest convectively driven scale in the Sun
by Featherstone & Hindman (2016) and Vasil et al. (2021).
On the other hand, a rapidly rotating run of Featherstone &
Hindman (2016) with ℓconv ≈ 30 Mm, had Rossby number
RoFH = Ũ/(2ΩH) = 0.011, where Ũ is a typical velocity am-
plitude and H is the shell thickness. This corresponds to a global
Coriolis number Co = 2πRo−1

FH ≈ 14.5 in the conventions of
the current study. In the current runs A9, B9, and C9, Co ≈ 17
and kmax ≈ kmean ≈ 17, corresponding to ℓconv ≈ 26 Mm.
Therefore the current simulations give a very similar estimate
for ℓconv at comparable values of Co despite all of the differ-
ences between the model set-ups. However, the values of CoF
in runs A9, B9, and C9 are at least 16 times higher than in the
Sun, suggesting that the simulations of Featherstone & Hindman
(2016) were also rotating much faster than the Sun3. Therefore

3 For example, their run with Ro = 0.011 has RaF = 6.81 · 106,
Ek = 1.91 · 10−4, and Pr = 1, and corresponds to Ra⋆F =

RaFEk
3/(8Pr) = 5.9 ·10−6, or CoF = (Ra⋆F)

−1/3 ≈ 55. This yields

the current results suggest that rotationally constrained convec-
tion cannot explain the appearance of supergranular scale as the
largest convective scale in the Sun.

Figure 4 shows the velocity power spectra for the most
rapidly rotating runs with Co ≈ 17 for Re = 30 . . . 142 from
Runs A9, A9m, and A9h. There is a marked increase in the
power at large scales, which begins to affect kmean at the highest
Re or Run A9h. This is due to the gradual onset of large-scale
vorticity production, most likely due to two-dimensionalisation
of turbulence, that has been observed in various earlier studies
of rapidly rotating convection (e.g. Chan 2003, 2007; Chan &
Mayr 2013; Käpylä et al. 2011; Guervilly et al. 2014). Despite
the rapid rotation with Coriolis numbers exceeding 16, the large-
scale vorticity generated in the current simulations is relatively
modest apart from Run A9h. A difference to many of the pre-
vious studies is that here the relevant thermal Prandtl number
(PrSGS) is of the order of unity whereas in many of the ear-
lier studies Pr was lower. Large-scale vorticity production was
indeed observed in an additional run which is otherwise identi-
cal to A9 except that PrSGS = 0.2 instead of PrSGS = 1 (not
shown).

Ω/Ω⊙ ≈ [(Ra⋆F)⊙/Ra⋆F]
1/3 ≈ 17.6, which is approximate because

different length scales are used.

7
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Fig. 4. Normalized velocity power spectra near the surface of
simulations with Co ≈ 17 and Re = 30 . . . 142 (Runs A9, A9m,
and A9h). The dotted line shows a Kolmogorov k−5/3 scaling
for reference.

3.4. Measures of rotational influence

3.4.1. Velocity-based Co

The suitability of different measures of rotational influence on
the flow has been discussed in various works in the literature
(e.g. Käpylä 2023). A common – and justified – critique regard-
ing the Coriolis number as defined in Equation (27) is that it
does not appreciate the fact that ℓconv = ℓconv(Ω) (e.g. Vasil
et al. 2021). The most straightforward way is to measure the
mean wavenumber and use Eq. (29). Figure 5 shows Coℓ as
a function of Co for all run listed in Table 1. For slow rota-
tion, Co ≲ 1, Coℓ ∝ Co because uconv and ℓconv are almost
unaffected by rotation. For sufficiently rapid rotation this is no
longer true because kmean ≈ kmax ∝ Co1/2 as indicated by
Eq. (A.10) and the simulation results; see the inset of Figure 3.
This implies that for rapid rotation Coℓ ∝ Co1/2; see also
Eq. (A.12). This is consistent with the numerical results found
in the most rapidly rotating cases; see Fig. 5. The higher reso-
lution runs in Set Am have somewhat lower Coℓ than the corre-
sponding runs in Set A because the convective velocities in the
higher resolution cases are higher. This shows that the simula-
tions are not yet in an asymptotic regime where the results are
independent of the diffusivities. This is further demonstrated by
the high resolution runs of Set Ah: Run A5h follows the trend
set by Run A5m. The Run A9h with a significantly higher Coℓ
than in Runs A9 and A9m is explained by the increasing kmean

due to the large-scale vorticity generation in that case. Aurnou
et al. (2020) showed that the dynamical Rossby number is related
to the diffusion-free modified flux Rayleigh number Ra⋆F, with
different powers for slow and rapid rotation. The correspond-
ing derivations for the Coriolis number Coℓ are presented in
Appendix A, and which show that Coℓ = (Ra⋆F)

−1/3 (slow ro-
tation) and Coℓ = (Ra⋆F)

−1/5 (rapid rotation). Both scalings are
also supported by the simulation results; see the inset of Figure 5.

3.4.2. Vorticity-based Co

Another commonly-used definition, Equation (28), is used to
take the changing length scale automatically into account.
However, Coω comes with a caveat which has apparently not
been discussed hitherto in the astrophysical literature. This is
demonstrated by considering a set of rotating systems at asymp-

Fig. 5. Dynamical Coriolis number Coℓ as a function of Co for
all of the runs in Table 1. Power laws proportional to Co (slow
rotation; Co < 1) and Co1/2 (rapid rotation; Co > 2) are shown
for reference. The inset shows Coℓ as a function of Ra⋆F with
power laws proportional to (Ra⋆F)

−1/5 (rapid rotation; Ra⋆F <
3 · 10−3), and (Ra⋆F)

−1/3 (slow rotation; Ra⋆F > 0.03).

totically high Re where urms is independent of Re. The forc-
ing is assumed fixed by a constant energy flux through the sys-
tem, and the asymptotic value of urms when Re → ∞ as u∞.
Furthermore, in this regime the mean kinetic energy dissipation
rate

ϵK = 2νS2, (44)

where the overbar denotes a suitably defined average, tends to a
constant value when normalized by mean length and correspond-
ing rms-velocity (e.g. Sreenivasan 1984; Vassilicos 2015). This
value is denoted as ϵ∞. In low-Mach number turbulence, which
is a good approximation of stellar interiors, as well as the current
simulations with Ma ∼ O(10−2),

ϵK = νω2 = νω2
rms. (45)

From the definition of system scale Reynolds number it follows
that

Re =
u∞

νk1
∝ ν−1, (46)

and from Eq. (45) that

ωrms =

(
ϵK
ν

)1/2

=
(ϵ∞

ν

)1/2

∝ ν−1/2 ∝ Re1/2. (47)

Using Eq. (28) it is found that

Coω ∝ Re−1/2, or Co ∝ Re1/2Coω. (48)

This means that Coω → 0 as Re → ∞ at constant Co, while
the dynamics at large (integral) scales are unaffected. Therefore
Coω underestimates the rotational influence at the mean scale
kmean which dominates the dynamics, as opposed to Eq. (27)
overestimating it.

Equation (47) can also be written as

ωrms ≡ kωurms ∝ Re1/2. (49)

For sufficiently large Re, the theoretical prediction is that
urms → u∞ = const. and kω ∝ Re1/2. This has been con-
firmed from numerical simulations of isotropically forced ho-
mogeneous turbulence (e.g. Brandenburg & Petrosyan 2012;
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Fig. 6. Normalized velocity power spectra near the surface of
simulations with Co ≈ 1.3 and Re = 40 . . . 174 (Runs A6, A6b,
and A6c). The dotted line shows Kolmogorov k−5/3 scaling for
reference. The inset shows kmean (black symbols) and kω (red)
as functions of Re. The dotted lines are proportional to powers
0, and 1/2 of Re.

Fig. 7. Root-mean-square velocity in the convection zone nor-
malized by u⋆. The dotted line is proportional to Co1/6 as indi-
cated by the theoretical CIA scaling; see Eq. (51).

Candelaresi & Brandenburg 2013). Here the dependence of kω
on Re is shown in the inset of Figure 6 for runs with Co ≈ 1.3
and Re ranging between 40 and 174. Here the results for kω fall
somewhat below theoretical Re1/2 expectation. This is likely be-
cause the asymptotic regime requires still higher Reynolds num-
bers. On the other hand, the mean wavenumber kmean is essen-
tially constant around kmean/k1 = 7 in this range of Re because
the dominating contribution to the velocity spectrum come from
large scales that are almost unaffected by the increase in Re.

3.5. Convective velocity as a function of total flux and
rotation

The scalings of convective velocity as a function of rotation
are derived in Appendix A following the same arguments as in
Aurnou et al. (2020). For slow rotation the convective velocity
depends only on the energy flux:

urms ∼
(
Ftot

ρ

)1/3

= u⋆, (50)

Fig. 8. Filling factor of downflows as a function of height f(z)
for three runs with no (black), moderate (blue), and rapid (red)
rotation.

where u⋆ is defined via Eq. (31). This scaling is altered in the
rapidly rotating regime, where

urms ∝
(
F

ρ

)1/3

Co−1/6. (51)

This results agrees with Eq. (50d) Aurnou et al. (2020) and
Table 2 of Vasil et al. (2021). Therefore the velocity amplitude in
the rapidly rotating regime is expected to depend not only on the
available flux but also on rotation. Fig. 7 shows the correspond-
ing numerical results for the Sets A, B, C, and Am. For slow rota-
tion, Co ≲ 0.3, urms is roughly constant around urms ≈ 1.55u⋆

for Sets A, B, and C, and urms ≈ 1.65u⋆ for Set Am. In the
rapid rotation regime urms follows a trend which is similar to
that indicated in Eq. (51), but the agreement is not perfect. The
simulations in this regime may suffer from the fact the supercrit-
icality of convection decreases with Co. However, the medium
resolution runs, visualized by the grey symbols in Fig. 7, do not
show a significantly better agreement with theory. Nevertheless,
the evidence for CIA balance being reached in the current simu-
lations with rapid rotation is fairly convincing.

3.6. Flow statistics

Compressible non-rotating convection is characterized by broad
upflows and narrow downflows (Stein & Nordlund 1989;
Cattaneo et al. 1991); see also Figure 2. This can be described
by the filling factor f of downflows as

uz(z) = f(z)u↓
z + [1− f(z)]u↑

z(z), (52)

where uz is the mean vertical velocity, whereas u↑
z and u↓

z are the
corresponding mean up- and downflow velocities. It was shown
in Käpylä (2021) that f is sensitive to the effective Prandtl num-
ber of the fluid such that a lower Pr leads to a lower filling fac-
tor. Here a similar study is done as a function of rotation; see
Fig. 8. The main result is that f approaches 1/2 in the rapid ro-
tation regime. This is because in rapidly rotating convection the
broad upwellings of non-rotating convection are broken up and
the flow consist mostly of smaller scale helical columns where
the up- and downflows are almost invariant. This is due to the
Taylor-Proudmann constraint such that derivatives along the ro-
tation axis vanish. Hence the tendency for larger structures to
appear at greater depths is inhibited and the average size of con-
vection cells as a function of depth is almost constant; see right-
most panel of Figure 2.
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Fig. 9. Probability density functions P(ui) for ux (left), uy (middle), and uz (right) for depths z/d = 0.85 (black), z/d = 0.49
(blue), and z/d = 0.13 (red) for runs with Co = 0 (Run A0, top row), Co = 1.3 (Run A6, middle), and Co = 16.5 (Run A9,
bottom). The tildes refer to normalization by the respective rms-values.

This is also apparent from the probability density functions
(PDFs) of the velocity components ui, defined via∫

P(ui, z)dui = 1. (53)

Figure 9 shows representative examples of PDFs for the extreme
cases (Run A0 with Co = 0 and Run A9 with Co ≈ 16.5) and
at an intermediate rotation rate (Run A6, Co = 1.3). In non-
rotating convection the PDFs of the horizontal components of
the velocity are nearly Gaussian near the surface whereas for
uz the distributions are highly skewed due to the up-/downflow
asymmetry. In deeper parts also the horizontal velocities devi-
ate from a Gaussian distribution in agreement with earlier works
(e.g. Brandenburg et al. 1996; Hotta et al. 2015; Käpylä 2021)

As the rotation increases the asymmetry of the vertical ve-
locity decreases such that in the most rapidly rotating cases con-
sidered here with Co ≈ 17, uz also approaches a Gaussian dis-
tribution. Only near the surface (z/d = 0.85) a weak asymmetry
remains. The horizontal components of velocity continue to have
Gaussian distribution as rotation is increased, although there is
not enough data to say anything concrete concerning the tails of
the distributions at high velocity amplitudes. To further quantify
the statistics of the flow, skewness S and kurtosis K are com-
puted from:

S =
M3

σ3
u

, K =
M4

σ4
u

, (54)
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Fig. 10. Skewness (S, dashed lines) and kurtosis (K, solid) from the same runs as in Figure 9. Black, blue, and red colour indicates
data corresponding to ux, uy , and uz , respectively. Note the difference in scale between each of the panels. The insets show a zoom
in of the region z/d ≥ 0.

where σu = (M2)1/2, with

Mn(ui, z) =

∫
[ui(x)− ui(z)]

nP(ui, z)dui. (55)

Figure 10 shows S and K for all ui for the same runs as in
Figure 9. The skewness in consistent with zero for the horizon-
tal velocities which is expected as there is not anisotropy in the
horizontal plane. The negative values of S for uz are a signature
of the asymmetry between up- and downflows. As rotation is in-
creased, S approaches zero also for uz . Kurtosis K is a measure
of non-Gaussianity or intermittency. In the non-rotating case K
increases from roughly three – indicating Gaussian statistics –
to roughly five for horizontal flows as a function of depth within
the CZ. For uz the increase of K is much more dramatic be-
low z/d ≲ 0.3. This is because downflows merge at deeper
depths such that only a few of them survive deep in the CZ
and especially in the overshoot region below roughly z = 0,
where K reaches a peak value of rouhgly 65 for Run A0. A
similar, albeit lower, maximum appears also for the horizontal
flows. At intermediate rotation (Run A6; Co = 1.3), uz still ex-
hibits strong intermittency below z ≈ 0.1 with max(K) ≈ 54
whereas K for the horizontal flows is significantly reduced in
comparison to the non-rotating case. This indicates that espe-
cially the vertical flows in this regime are not qualitatively dif-
ferent from those in the non-rotating regime, such that the down-
flows in the overshoot region are rather abruptly decelerated
and diverted horizontally. For the most rapidly rotating case
(Run A9; Co = 16.5), K ≈ 3 . . . 4 throughout the simulation do-
main for both vertical and horizontal flows. This is explained by
the almost complete wiping out of the up-/downflow asymme-
try also in the deep parts of the CZ and in the overshoot region.
The absence of a peak in the kurtosis in the overshoot region in
the most rapidly rotating cases is likely due to the deeply pen-
etrating vertical flows in those cases due to the unrealistically
small Richardson number. This is discussed in more detail in
Section 3.7.

The average vertical rms-velocities from the same represen-
tative runs as in Figure 9 are shown in Figure 11. The aver-
age rms-velocity of the downflows (upflows) is always larger
(smaller) than the average total vertical rms-velocity. However,
the difference between the up- and downflows and the total rms-
velocity diminish monotonically as a function of rotation such
that for the most rapidly rotating case the three are almost the

Fig. 11. Horizontally averaged vertical rms-velocity for the same
runs as in Figure 9. The overall vertical velocity (ũrms

z ) is shown
in black, and the corresponding quantities for up- (ũ↑rms

z ) and
downflows (ũ↓rms

z ) are shown in red and blue, respectively. The
tildes refers to normalization by

√
gd.

same. This is another manifestation of the symmetrization of up-
and downflows.

Another consequence of the symmetrization of the verti-
cal flows is that the forces on the up- and downflows also ap-
proach each other; see Fig. 12, where fz = ρDuz/Dt. In ac-
cordance with earlier studies (Käpylä et al. 2017; Käpylä 2019),
in non-rotating convection the downflows are accelerated near
the surface and decelerated roughly when the stratification turns
Schwarzschild stable, whereas the upflows are accelerated ev-
erywhere except near the surface. This is interpreted such that
the upflows are not driven by buoyancy but by pressure forces
due to the deeply penetrating downflow plumes. This qualitative
picture remains unchanged for slow rotation, but starts to change
when Co is of the order of unity although the region near the
surface where the downflows are accelerated is shallower; see
Fig. 12(b). For rapid rotation the forces on the up- and down-
flows are nearly identical. However, the situation continues to
qualitatively deviate from the mixing length picture also in the
rapidly rotating cases in that the downflows are accelerated only
near the surface and braked throughout their descent through the
superadiabatic CZ; see Fig. 12(c).
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Fig. 12. Horizontally averaged total force (black), and separately
for up- (red) and downflows (blue). The dotted red/blue line
shows the superadiabatic temperature gradient. Data is shown
for (a) a non-rotating run A0, (b) an intermediate rotation rate
(Co = 1.3, Run A6), and (c) for rapid rotation (Co = 16.5,
Run A9).

3.7. Overshooting and Deardorff layers

The depths of the overshooting and Deardorff layers are studied
as functions of rotation using the same definitions of overshoot-
ing and Deardorff layers as in previous studies (Käpylä 2019,
2021). The bottom of the CZ is situated at the depth zCZ where
F conv changes from negative to positive with increasing z. The
top of the Deardorff zone (DZ) – or the bottom of the buoyancy
zone (BZ) – zBZ, is where the superadiabatic temperature gra-
dient changes from negative to positive with increasing z. Then
the depth of the DZ is

dDZ =
1

∆t

∫ t1

t0

[zBZ(t)− zCZ(t)]dt, (56)

where ∆t = t1 − t0 is the length of the statistically steady part
of the time series. A reference value of the kinetic energy flux
(F

ref

kin) is measured at zCZ. The base of the overshoot layer is
taken to be the location (zkinOS ) where |F kin| falls below 0.01F

ref

kin,

and

dkinos =
1

∆t

∫ t1

t0

[zCZ(t)− zkinOS (t)]dt, (57)

This criterion breaks down in the current models when rota-
tion begins to dominate the dynamics and where F kin → 0.
Therefore the convected flux F conv was also used to estimate the
depth of overshooting. The criterion involving F conv takes the
overshoot layer to end at the location (zconvOS ) where |F conv| falls
below 0.02Ftot. The corresponding overshooting depth (dconvos )
is computed analogously to Eq. (57). The layer below the OZ is
the radiative zone (RZ).

Figure 13 shows the energy fluxes from representative runs
at different Coriolis numbers from Set A. For slow and moder-
ate rotation up to Co ≈ 1 the situation is qualitatively similar:
the positive (upward) enthalpy flux exceeds Fbot in the bulk of
the CZ, and it is compensated by a negative (downward) kinetic
energy flux F kin. As rotation increases the maxima of F enth and
|F kin| decrease monotonically. Similarly, the extents of the over-
shoot and Deardorff layers diminish with rotation. For the most
rapidly rotation case, Run A9 with Co = 16.5, the kinetic en-
ergy flux is almost zero, and F conv ≈ F enth. This is yet an-
other manifestation of the decreasing asymmetry between the
up- and downflows. Moreover, the Deardorff layer vanishes in
the rapidly rotating cases.

The positions of the boundaries of the different layers and
their depths are summarized for all runs in Table 2, and Fig. 14
shows a summary of the overshooting and Deardorff layer depths
as a function of rotation from Sets A, B, and C. The main differ-
ence between the sets of simulations of the applied flux Fn. The
overshooting depth measured from the kinetic helicity flux de-
creases with increasing rotation as in earlier studies (e.g. Ziegler
& Rüdiger 2003; Käpylä et al. 2004). However, the lowermost
panel of Fig. 13 shows that the upper part of the radiative layer is
mixed far beyond the regions where F kin is non-negligible in the
rapidly rotating cases. This is confirmed when the convected flux
is used to estimate the overshooting depth. Furthermore, dconvos
increases with rotation for Co ≳ 1. This is explained by the fact
that the Mach number, and therefore also the rotation rate Ω0, in
the current simulations are much larger than in real stars. This
means that the convective, rotation, and Brunt-Väisälä frequen-
cies are closer to each other in the simulations in comparison to,
for example, the overshoot region of the Sun. For example, in
the most rapidly rotating runs the Richardson number based on
the rotation rate RiΩ is smaller than unity; see the 11th panel of
Table 1. This, in addition to the smooth transition from convec-
tive to radiative region, can lead gravity waves breaking in the
radiative layer, thus contributing to the burrowing of the flows
into the RZ (e.g. Lecoanet & Quataert 2013). As a comparison,
RiΩ in the upper part of the solar radiative zone is expected of
the order of 104. Another possibility is that shear due to the rota-
tionally constrained convective columns lowers the correspond-
ing shear Richardson number close to the limit where turbulence
can occur also in thermally stable stratification.

Lowering the luminosity in Sets B and C shows that both
measures of dos decrease with Fn in qualitative accordance with
earlier results (e.g. Käpylä 2019). Even though RiΩ is modestly
increased in these runs (see the 11th column in Table 1), the most
rapidly rotating cases even in the runs with the lowest luminosi-
ties continue to show deep mixing which is most likely due to
the still unrealistically low RiΩ. It is numerically very expensive
to increase the Richardson number in fully compressible simula-
tions much further, at least without accelerated thermal evolution
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Fig. 13. Time-averaged mean energy fluxes as defined in
Equations (34) to (38) (apart from the negligibly small viscous
flux F visc) as a functions of z from Runs A0, A6, and A9. The
red circles indicate (from left to right) the bottoms of OZ, DZ,
BZ, and the top of the BZ. The grey (orange) shaded areas indi-
cate mixed (radiative) regions.

methods (e.g. Anders et al. 2018, 2020). Comparing the over-
shooting depths between Runs [A,B,C]5 with solar CoF and the
non-rotating Runs [A,B,C]0 shows a reduction between about a
third to a half; see the seventh and eight columns in Table 2. In
Käpylä (2019) the overshooting depth extrapolated to the solar
value of Fn was found to be roughly 0.1Hp, and the current re-
sults including rotation reduce this to 0.05 . . . 0.07Hp. However,
the dependence of the overshooting depth on Fn is here steeper
([d̃kinos , d̃convos ] ∝ F 0.15

n ) than in the nonrotating cases where
Käpylä (2019) found dos ∝ F 0.08

n .
On the other hand, the thickness of the Deardorff layer dDZ

decreases monotonously as a function of Co. In the most rapidly

Table 2. Summary of the buoyancy, Deardorff, and overshoot
zones.

Run zBZ/d zDZ/d zkinOS/d zconvOS /d d̃DZ d̃kinos d̃convos

A0 0.355 0.134 −0.096 −0.204 0.221 0.230 0.338
A1 0.338 0.128 −0.103 −0.205 0.210 0.231 0.333
A2 0.333 0.124 −0.088 −0.185 0.209 0.212 0.309
A3 0.318 0.130 −0.065 −0.134 0.189 0.195 0.264
A4 0.290 0.131 −0.028 −0.054 0.159 0.159 0.185
A5 0.278 0.132 −0.021 −0.039 0.146 0.153 0.171
A6 0.255 0.131 −0.007 −0.021 0.123 0.138 0.152
A7 0.211 0.134 0.026 −0.025 0.077 0.108 0.159
A8 0.154 0.154 0.065 −0.103 0.001 0.088 0.257
A9 0.161 0.183 0.120 −0.150 0.000 0.064 0.333
B0 0.338 0.124 −0.094 −0.185 0.214 0.218 0.309
B1 0.329 0.121 −0.090 −0.179 0.208 0.211 0.299
B2 0.326 0.117 −0.082 −0.166 0.209 0.200 0.284
B3 0.321 0.124 −0.054 −0.122 0.197 0.179 0.246
B4 0.280 0.125 −0.012 −0.039 0.154 0.138 0.164
B5 0.264 0.124 −0.005 −0.024 0.140 0.128 0.147
B6 0.252 0.125 0.007 −0.009 0.127 0.119 0.134
B7 0.204 0.128 0.036 −0.008 0.076 0.092 0.136
B8 0.138 0.136 0.090 −0.075 0.002 0.046 0.212
B9 0.133 0.156 0.156 −0.126 0.000 0.000 0.281
C0 0.323 0.116 −0.086 −0.166 0.206 0.203 0.283
C1 0.336 0.119 −0.084 −0.166 0.216 0.204 0.285
C2 0.316 0.115 −0.074 −0.150 0.201 0.188 0.265
C3 0.304 0.116 −0.047 −0.105 0.189 0.163 0.221
C4 0.278 0.118 −0.007 −0.031 0.160 0.124 0.149
C5 0.259 0.119 0.001 −0.020 0.140 0.118 0.139
C6 0.240 0.119 0.011 −0.005 0.120 0.108 0.124
C7 0.196 0.121 0.043 −0.002 0.074 0.079 0.124
C8 0.129 0.129 0.106 −0.056 0.000 0.023 0.185
C9 0.118 0.140 0.140 −0.106 0.000 0.000 0.247
A1m 0.321 0.128 −0.101 −0.232 0.193 0.229 0.359
A3m 0.309 0.130 −0.056 −0.143 0.178 0.187 0.274
A5m 0.264 0.133 −0.009 −0.032 0.131 0.143 0.165
A6m 0.250 0.131 −0.002 −0.017 0.119 0.133 0.148
A7m 0.218 0.133 0.018 −0.015 0.085 0.115 0.148
A8m 0.165 0.147 0.064 −0.093 0.018 0.083 0.240
A9m 0.163 0.177 0.052 −0.163 0.000 0.126 0.340
A5h 0.254 0.134 −0.010 −0.031 0.120 0.144 0.165
A9h 0.170 0.170 0.060 −0.183 0.000 0.110 0.353

Notes. The tildes for refer to normalization by the pressure scale height
at the base of the convection zone.

rotating cases the Deardorff layer vanishes altogether and even
reverses such that at the base of the CZ the stratification is un-
stably stratified but the convective flux is inward; see the low-
ermost panel of Figure 13. This is not significantly changed in
more supercritical Runs A9m and A9h. In the entropy rain pic-
ture (e.g. Brandenburg 2016) cool material from the surface is
brought down deep into otherwise stably stratified layers. This
is mediated by relatively few fast downflows with filling fac-
tor f(z) < 1/2, that also produce a strong net downward ki-
netic energy flux as seen in the top panel of Figure 13; see also
Fig. 8, and Table 1 and Sect. 3.3 in Brandenburg (2016). If, on
the other hand, the up- and downflows are symmetrized such that
f(z) = 1/2 and their velocities are nearly the same, F kin van-
ishes and non-local transport due to downflows is no longer sig-
nificant. Therefore the kinetic energy flux is a proxy of the non-
local transport due to downflows and its absence signifies the
absence of a Deardorff layer. The depth of the Deardorff layer is
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Fig. 14. Depth of the overshoot layer from kinetic energy (dkinos ;
black lines) and convective fluxes fluxes (dconvos ; red), and depth
of the Deardorff layer (dDZ; blue) as functions of rotation mea-
sured by Co. All quantities are normalized by the pressure scale
height at the base of the CZ. The different lines correspond to the
three different values of Fn or Sets A (solid lines), B (dashed),
and C (dotted).

independent of the energy flux Fn. This further illustrates that
the DZ is caused by surface effects which are kept independent
of Fn in the current simulations. A reduction of dDZ of about a
third between the non-rotating runs [A,B,C]0 and the runs with
the solar value of CoF (Runs [A,B,C]5) was found; see the sixth
column of Table 2.

4. Conclusions

Simulations of compressible convection were used to study the
convective scale and scalings of quantitites such as the Coriolis
number and convective velocity as functions of rotation. The
results were compared to those expected from scalings ob-
tained for incompressible convection with slow and fast rotation
(Aurnou et al. 2020). The actual length scale is almost unaffected
by rotation for Co ≲ 1 and decreases proportional to Co1/2 for
rapid rotation. Correspondingly, the dynamical Coriolis number
Coℓ is proportional to Co for slow, and ∝ Co1/2 for rapid ro-
tation. Furthermore, Coℓ is proportional to (Ra⋆F)

−1/3 for slow
and ∝ (Ra⋆F)

−1/5 for rapid rotation, where Ra⋆F is the diffusion-
free flux-based modified Rayleigh number. Finally, the convec-
tive velocity is compatible with proportionality to (Ftot/ρ)

1/3

for slow and ∝ (Ftot/ρ)
1/3Co−1/6 for rapid rotation. All of

these scalings are consistent with those derived by Aurnou et al.
(2020) and Vasil et al. (2021). Therefore the simulations seem to
follow the CIA scaling at sufficiently rapid rotation.

In an earlier work (Käpylä 2023) several measures were used
to characterise the rotational influence on convection. A com-
monly used definition where the changing length scale of con-
vection is taken into account is Coω = 2Ω/ωrms. It is shown that
this quantity cannot be used to characterise the effects of rotation
on the mean scale because ωrms is expected to increase with the
Reynolds number as Re1/2. Therefore the only reliable way to
account for the changing convective length scale as a function of
rotation is to compute the mean wavenumber. This was not cor-
rectly identified in Käpylä (2023), and it is now clear that Coω
will diverge as Re increases. On the other hand, Käpylä (2023)
introduced a stellar Coriolis number Co⋆ which depends on lu-
minosity and rotation rate which are observable and a reference

density which is available from stellar structure models, but not
on any dynamical lenght or velocity scale. Here this quantity is
renamed as CoF and it is furthermore shown that with a suit-
able choice of length scale, CoF = (Ra⋆F)

−1/3. Matching CoF
(or equivalently Ra⋆F) with the target star gives a more concrete
meaning to the often-used phrase that it is possible to match the
Coriolis number of, for example, the Sun with 3D simulations
while most other dimensionless parameters are out of reach (cf.
Käpylä et al. 2023).

The current simulations suggest that convection even in the
deep parts of the CZ in the Sun is not strongly rotationally con-
strained and that the CIA balance is therefore inapplicable there.
The latter has been argued to be the case by Featherstone &
Hindman (2016) and Vasil et al. (2021) to argue that the largest
convectively driven scale in the Sun is the supergranular scale.
The current results seem to refute this conjecture and that the
actual scales may be larger.

Finally, the effects of rotation on convective overshooting
and subadiabatic Deardorff zones were studied. The effects of
rotation are relatively mild such that for the case with the so-
lar value of CoF, the overshooting depth and the extent of the
Deardorff layer are reduced by between 30 and 50 per cent in
comparison to the non-rotating case. Therefore the current re-
sults suggest an overshooting depth of about five per cent of the
pressure scale height at the base of the solar CZ. Taking the cur-
rent results at face value, a similar depth is estimated for the
Deardorf zone. However, the latter is still subject to the caveat
that the current simulations do not capture the near-surface layer
very accurately and that the driving of entropy rain can be sig-
nificantly stronger in reality. Another aspect which needs to be
revisited in the future is the effect of magnetic fields.
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Käpylä, P. J., Viviani, M., Käpylä, M. J., Brandenburg, A., & Spada, F. 2019,

Geophysical and Astrophysical Fluid Dynamics, 113, 149
Karak, B. B., Miesch, M., & Bekki, Y. 2018, Physics of Fluids, 30, 046602
King, E. M. & Buffett, B. A. 2013, Earth and Planetary Science Letters, 371, 156
Kupka, F. & Muthsam, H. J. 2017, Liv. Rev. Comp. Astrophys., 3, 1
Lecoanet, D. & Quataert, E. 2013, MNRAS, 430, 2363
O’Mara, B., Miesch, M. S., Featherstone, N. A., & Augustson, K. C. 2016, Adv.

Space Res., 58, 1475
Ossendrijver, M. 2003, A&A Rev., 11, 287
Pencil Code Collaboration, Brandenburg, A., Johansen, A., et al. 2021, The

Journal of Open Source Software, 6, 2807
Proxauf, B. 2021, PhD thesis, Georg August University of Gottingen, Germany
Roberts, P. H. 1968, Philosophical Transactions of the Royal Society of London

Series A, 263, 93
Roxburgh, L. W. & Simmons, J. 1993, A&A, 277, 93
Saikia, E., Singh, H. P., Chan, K. L., Roxburgh, I. W., & Srivastava, M. P. 2000,

ApJ, 529, 402
Schrinner, M., Petitdemange, L., & Dormy, E. 2012, ApJ, 752, 121
Schumacher, J. & Sreenivasan, K. R. 2020, Reviews of Modern Physics, 92,

041001
Singh, H. P., Roxburgh, I. W., & Chan, K. L. 1995, A&A, 295, 703
Singh, H. P., Roxburgh, I. W., & Chan, K. L. 1998, A&A, 340, 178
Spruit, H. 1997, Mem. Soc. Astron. Italiana, 68, 397
Sreenivasan, K. R. 1984, Physics of Fluids, 27, 1048
Stein, R. F. & Nordlund, A. 1989, ApJ, 342, L95
Stein, R. F. & Nordlund, Å. 1998, ApJ, 499, 914
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Appendix A: Convective scalings as function of
rotation

The scalings of relevant dynamical quantities in convection are
shortly summarized following the studies of Barker et al. (2014),
Aurnou et al. (2020), and Vasil et al. (2021). In the rapidly rotat-
ing regime the Coriolis-inertial-Archimedean (CIA) balance is
assumed to hold.

A.1. No or slow rotation (Co ≪ 1)

For slow rotation the convective length scale ℓconv is of the order
of the pressure scale height Hp = −(∂ ln p/∂z)−1, and the ver-
tical and horizontal extents of convection cells are of the same
order of magnitude. When rotation is slow, the dominant bal-
ance in the Navier–Stokes equation is between the advection and
buoyancy terms:

u · ∇u ∼ T ′

T
g −→ u2

H
∼ T ′

T
g, (A.1)

where H is the convective scale T ′ is the temperature fluctu-
ation. Assuming that convection transports most of the energy
gives

Ftot ∼ cPρuT
′, (A.2)

and therefore

u3 ∼ gH

cPT

Ftot

ρ
, or u ∼

(
gH

cPT

)1/3 (
Ftot

ρ

)1/3

. (A.3)

Choosing H = cPT/g gives:

u ∼
(
Ftot

ρ

)1/3

≡ u⋆, (A.4)

where u⋆ is a hypothetical velocity that is a measure of the avail-
able energy flux. Therefore, for slow rotation,

Co = Coℓ =
2ΩH

u
= 2ΩH

(
ρ

Ftot

)1/3

= (Ra⋆F)
−1/3. (A.5)

Temperature fluctuation can be computed from the convective
flux

Fconv = cPρuT
′, −→ cPT

′ =
F

ρu
. (A.6)

Using u from Eq. (A.4) yields:

cPT
′ =

(
F

ρ

)2/3

. (A.7)

A.2. Rapid rotation (Co ≫ 1)

The CIA balance means that

2Ω0∂∥u ∼ u · ∇ω ∼ ∇×
(
T ′

T
g

)
, (A.8)

which results from the curl of the Navier–Stokes equation (e.g.
Aurnou et al. 2020), and where ∂∥ is a derivative along the rota-
tion vector. Considering first the CI part of CIA balance gives

u · ∇ω ∼ 2Ω∂zu −→ k2⊥u
2 ∼ 2Ωuk∥, (A.9)
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Käpylä: Convective scale and subadiabatic layers in rotating convection

where k⊥ and k∥ are the wavenumbers perpendicular and par-
allel to the rotation vector. Identifying k⊥ as the dominant hori-
zontal scale of convection (kmax ∼ ℓ−1) and k∥ as k1 ∼ H−1,
leads to(
H

ℓ

)2

∝
(
kmax

k1

)2

∝ 2Ω

k1u
= Co, or

ℓ

H
= Co−1/2. (A.10)

Furthermore,

Co =
2ΩH

u
=

2Ωℓ

u

H

ℓ
= CoℓCo

1/2, (A.11)

or

Coℓ = Co1/2. (A.12)

The convective length scale in terms of u and global quantities
is

ℓ =

(
Hu

2Ω

)1/2

. (A.13)

To derive the convective velocity, CA part of the CIA balance is
used:

2Ω0∂∥u ∼ ∇×
(
T ′

T
g

)
, −→ 2Ωu

H
∼ gFtot

cPρTuℓ
. (A.14)

Substitute ℓ from Eq. (A.13) and rearrange to get:

u =

(
gFtot

cPρT

)2/5 (
H

2Ω

)1/5

=

(
Ftot

ρ

)2/5

(2ΩH)−1/5, (A.15)

where H = cPT/g was additionally used. This is equivalent to:

u =

(
Ftot

ρ

)1/3

Co−1/6. (A.16)

The length scale ℓ is obtained from Eq. (A.14) with substitution
of u from Eq. (A.15):

ℓ

H
=

(
Ftot

ρ

)1/5

(2ΩH)−3/5, (A.17)

where H = cPT/g was again used. Now,

Coℓ =
2Ωℓ

u
= (2ΩH)3/5

(
ρ

Ftot

)1/5

. (A.18)

Bearing Eq. (20) in mind gives:

Coℓ =

(
8Ω3H3ρ

F

)1/5

= (Ra⋆F)
−1/5. (A.19)

Finally, the temperature fluctuation using Eq. (A.16) is:

cPT
′ =

Ftot

ρu
=

(
Ftot

ρ

)2/3

Co1/6. (A.20)
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